44. This problem involved three different positions of the object. To solve it, we can break it into two separate problems.

Part 1 (From the top of the window to the bottom of the window):

Figure:

Calculations:

Equation for Uniformly Accelerated Motion
$x=x_{0}+v_{0} t+1 / 2 a t^{2}$
$x=x_{0}+v_{0} t+1 / 2 a t^{2}$
$-v_{0} t=x_{0}+1 / 2 a t^{2}$
$\mathrm{v}_{0}=-\left(\mathrm{x}_{0}+1 / 2 \mathrm{at}^{2}\right) / \mathrm{t}$
$\mathrm{v}_{0}=-\left[2.2 \mathrm{~m}+1 / 2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.28 \mathrm{~s})^{2}\right] /(0.28 \mathrm{~s})$
$\mathrm{v}_{0}=-6.4851 \mathrm{~m} / \mathrm{s}$

Use this equation because the others have more than one unknown.
$\mathrm{x}=0$, so it cancels out.
Solve for V_{0}.
Note that v_{0} is a negative number. This should make sense, since the rock is moving downward. Keep several decimal places until the very end of the entire problem.

Part 2 (From above the window to the top of the window):

Figure:

Given:(See Figure)
We want $\mathrm{x}_{0}-\mathrm{x}$ because x_{0} is the distance above the bottom of the window. We want to know how far above the
Want: $\mathrm{x}_{0}-\mathrm{x}$
window the rock was dropped from.

Z

Use this equation because we don't have any information about the time. We need an equation that allows us to solve for x_{0} without knowing about the time.
v_{0} is zero, so it cancels out.

Solve for x 0 .
$\Delta \mathrm{x}=\mathrm{x}-\mathrm{x}_{0}$

$$
=4.3458 \mathrm{~m}-2.2 \mathrm{~m}
$$

$\Delta \mathrm{x}=2.1458 \mathrm{~m}$
$\Delta x=2.1 \mathbf{m}$

Conclusion: The rock fell from 2.1 m above the top of the window.

